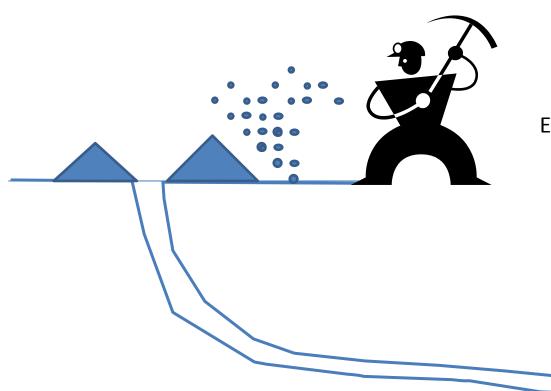
Umezaki M, 2 Oct 2012

Environmental Research 111 (2011) 463–467

# Multiple metals exposure in a small-scale artisanal gold mining community

Niladri Basu a, Dong-HaNam a, EdwardKwansaa-Ansah b, ElishaP.Renne c, JeromeO.Nriagu a


a Department of Environmental Health Sciences, University of Michigan School of Public Health, b Department of Chemistry, University of Science and Technology, Ghana, c Department of Anthropology, University of Michigan

## ABSTRACT.

Urinary metals were characterized in 57 male residents of a small-scale gold mining community in Ghana. Chromium and arsenic exceeded health guideline values for 52% and 34%, respectively, of all participants. About 10–40% of the participants had urinary levels of aluminum, copper, manganese, nickel, selenium, and zinc that fell outside the U.S. reference range. Exposures appear ubiquitous across the community as none of the elements were associated with occupation, age, and diet.

# Health concerns in small-scale gold mining (SSGM) communities

 Dust, noise, lack of protective gear, <u>mercury</u> <u>vapor</u>



Exposure to toxic elements?

Miners Non-miners

## Exposure to toxic elements in SSGM

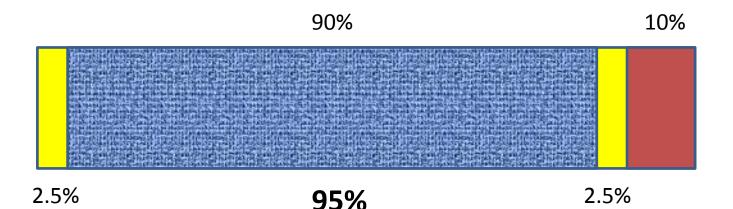
- SSGM in Brazil: blood Pb of 57% > CDC guideline (10 μg/dL)
- SSGM in Nigeria: all children > CDC guideline
- SSGM in Ghana: Urinary As elevated

# Objectives

 to characterize exposures to several elements (Al, As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Se, Zn) in the urine of male residents of a small-scale gold mining community.

Association with occupation, diet, health, and lifestyle?

# Participants and samples


- Summer 2009
- a mining community in the Talensi-Nabdam District in the Upper East region of Ghana.
- 57 males (self-selection)
- 20-50 ml urine (-20 °C)

# Metals analysis

- Al, As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Se, Zn
- ICP-MS
- Quality control: INSPQ; QMEQAS09 urine (ref)
- Analytical detection limit: 3 SD of blank

## Reference range for urinary elements

 non-exposed U.S. populations (Paschal etal.,1998; Komaromy-Hiller etal.,2000).



#### Table 1

Means and selected percentile of urinary elements ( $\mu$ g/L) for the entire population. For each element the corresponding reference range (in  $\mu$ g/L) for the U.S. population is provided based on the work of Komaromy-Hiller et al. (2000) and Paschal et al. (1998) using the superscripted letters A and B, respectively. For added comparison, range of urinary elements is also reported from a small study of four individuals from Accra, Ghana based on the work of Asante et al. (2007).

|          | Geometric mean | Mean            | Percenti     | le             |                 | U.S. ref.       | Ghana ref.      |                  |                                            |                  |
|----------|----------------|-----------------|--------------|----------------|-----------------|-----------------|-----------------|------------------|--------------------------------------------|------------------|
|          |                |                 | Min          | 25             | 50              | 75              | 90              | Max              | range                                      | range            |
| Al<br>As | 16.91<br>94.33 | 21.62<br>114.52 | 4.4<br>11.75 | 10.84<br>73.19 | 17.46<br>100.21 | 27.34<br>135.32 | 40.87<br>223.97 | 109.65<br>354.81 | 0-34.0 <sup>A</sup><br>0-52.2 <sup>A</sup> | 120-280          |
| Cd       | 0.38           | 0.45            | 0.10         | 0.25           | 0.36            | 0.6             | 0.88            | 1.32             | 0-1.0 <sup>A</sup>                         | 0.3-0.4          |
| Co<br>Cr | 1.79<br>24.17  | 2.32<br>26.58   | 0.31<br>5.73 | 1.05<br>18.69  | 2.01<br>24.65   | 3.37<br>32.23   | 4.56<br>44.15   | 7.41<br>58.59    | 0–8.3 <sup>B</sup><br>0–3.5 <sup>A</sup>   | 1.6–2.2<br>22–31 |
| Cu       | 37.33          | 40.85           | 12.02        | 28.85          | 37.41           | 51.14           | 66.13           | 79.43            | 1.0-55.0 <sup>A</sup>                      | 536-708          |
| Mn       | 1.16           | 2.01            | 0.33         | 0.6            | 0.91            | 1.73            | 4.29            | 14.45            | 0-3.3 <sup>B</sup>                         | 3.1-4.9          |
| Ni       | 5.36           | 6.51            | 1.35         | 3.85           | 5.41            | 7.95            | 11.5            | 25.71            | 0-12.0 <sup>A</sup>                        |                  |
| Pb       | 1.12           | 1.34            | 0.18         | 0.73           | 1.31            | 1.9             | 2.41            | 2.75             | $0-6.4^{B}$                                | 1.0-3.1          |
| Se       | 31.29          | 39.4            | 5.75         | 19.38          | 31.47           | 53.63           | 77.29           | 123.03           | 25.0-182.0 <sup>A</sup>                    | 47-77            |
| Zn       | 437.21         | 601.27          | 87.10        | 207.97         | 476.19          | 892.73          | 1222.88         | 2089.30          | 8.0-766.8 <sup>A</sup>                     | 333-697          |

## Elements that exceeded US ref range

- Cr (100%); 34% >30µg/g Cr (protect workers)
- As (87%); 52% >100 μg/L (health concern)
- Zn (40%)
- Al, Cu, Mn, Ni (10-20%)

• Se (38%) < US ref range

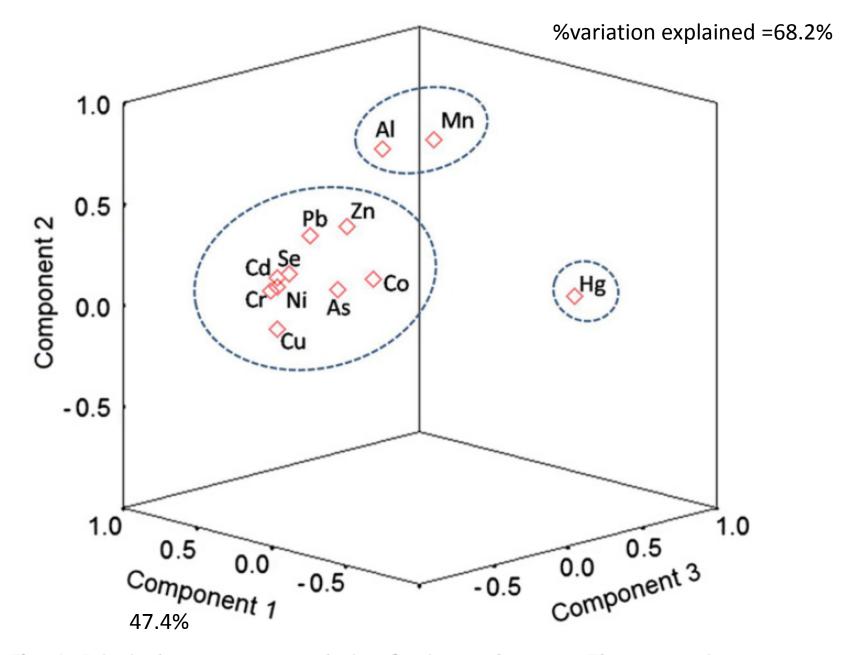
#### Table 2

Urinary elements stratified according to several variables with mean concentrations ( $\mu$ g/L) provided. No statistically significant differences were found for any of the variables below.

|                            |               | Al    | As     | Cd   | Со   | Cr    | Cu    | Mn   | Ni   | Pb   | Se                    | Zn     |
|----------------------------|---------------|-------|--------|------|------|-------|-------|------|------|------|-----------------------|--------|
| Age                        | 19-29         | 17.58 | 104.86 | 0.45 | 1.92 | 26.31 | 37.90 | 2.74 | 4.96 | 1.34 | 5 <mark>55.</mark> 99 | 31.79  |
|                            | 30–39         | 25.45 | 120.95 | 0.50 | 2.91 | 29.55 | 48.46 | 1.22 | 9.55 | 1.64 | 758.45                | 44.36  |
|                            | 40-49         | 22.70 | 101.25 | 0.32 | 2.16 | 22.43 | 38.53 | 1.94 | 5.22 | 1.18 | 570.00                | 36.36  |
|                            | 50-60         | 18.55 | 130.32 | 0.54 | 1.99 | 27.55 | 35.04 | 2.53 | 4.84 | 1.09 | 459.20                | 42.12  |
| # Years worked             | 0-3           | 17.06 | 115.89 | 0.43 | 2.13 | 29.12 | 42.39 | 3.41 | 5.92 | 1.40 | 629.85                | 40.91  |
|                            | 4-10          | 26.68 | 97.58  | 0.43 | 2.13 | 26.77 | 47.67 | 2.01 | 7.87 | 1.54 | 646.77                | 43.55  |
|                            | 11-34         | 21.56 | 122.31 | 0.47 | 2.51 | 25.21 | 36.68 | 1.30 | 6.10 | 1.20 | 562.86                | 36.63  |
| Education level            | None          | 22.49 | 109.45 | 0.40 | 1.82 | 37.48 | 36.08 | 1.37 | 5.90 | 1.29 | 40.85                 | 479.07 |
|                            | Primary       | 12.16 | 66.07  | 0.31 | 1.64 | 30.69 | 32.89 | 1.58 | 4.27 | 0.75 | 22.34                 | 314.05 |
|                            | Secondary     | 18.00 | 96.54  | 0.42 | 1.96 | 31.89 | 42.04 | 1.03 | 5.93 | 1.19 | 29.30                 | 532.48 |
|                            | > Secondary   | 4.68  | 46.77  | 0.13 | 0.48 | 20.42 | 35.48 | 0.33 | 3.16 | 0.63 | 14.45                 | 120.23 |
| Mining concession site     | World Bank    | 16.36 | 108.08 | 0.56 | 2.16 | 35.58 | 35.28 | 0.96 | 7.08 | 1.31 | 47.59                 | 559.11 |
|                            | Obuasi        | 19.13 | 96.36  | 0.37 | 1.78 | 34.69 | 38.02 | 1.40 | 5.64 | 1.19 | 32.07                 | 447.94 |
|                            | Kejitia       | 15.14 | 71.73  | 0.27 | 1.48 | 27.82 | 36.07 | 0.81 | 3.64 | 0.69 | 20.89                 | 355.98 |
| Fish consumption frequency | Never         | 9.05  | 77.03  | 0.28 | 0.94 | 33.11 | 34.67 | 0.88 | 4.20 | 0.81 | 24.55                 | 208.93 |
|                            | < 1x per week | 20.54 | 92.84  | 0.38 | 1.64 | 34.91 | 36.80 | 1.47 | 6.01 | 1.25 | 36.23                 | 493.80 |
|                            | > 1x per week | 16.81 | 99.37  | 0.39 | 2.20 | 32.56 | 38.58 | 1.03 | 5.08 | 1.01 | 28.21                 | 436.52 |

11

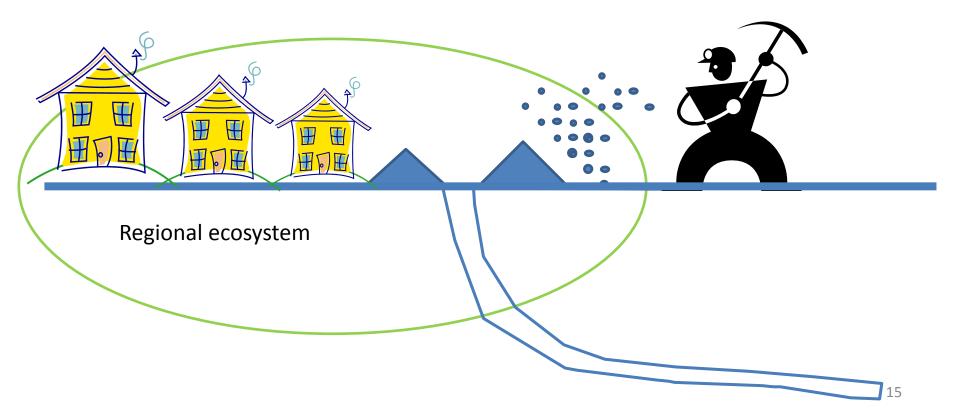
# Association with individual characteristics


- Age
- Number of years worked
- Education level
- Freq fish consumption
- Occupational groups (miners, non-miners)

# $\rightarrow NO$

### Table 3

Correlation matrix among urinary elements. Cells with an asterisk indicate elements that are significantly (*p* < 0.05) correlated. Mercury data were obtained from the study of Paruchuri et al. (2010).


| As<br>Cd<br>Co | 0.32*<br>0.38*<br>0.24 | 0.57*<br>0.26 | 0.37* |       |       |       |       |       |       |       |       |
|----------------|------------------------|---------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Cr             | 0.35*                  | 0.70*         | 0.69* | 0.41* |       |       |       |       |       |       |       |
| Cu             | 0.14                   | 0.44*         | 0.41* | 0.26* | 0.64* |       |       |       |       |       |       |
| Hg             | 0.00                   | 0.15          | -0.16 | 0.08  | -0.08 | -0.12 |       |       |       |       |       |
| Mn             | 0.35*                  | 0.00          | -0.05 | -0.02 | 0.01  | -0.03 | -0.08 |       |       |       |       |
| Ni             | $0.40^{*}$             | 0.43*         | 0.60* | 0.62* | 0.68* | 0.57* | -0.16 | -0.02 |       |       |       |
| Pb             | 0.52*                  | 0.51*         | 0.57* | 0.38* | 0.61* | 0.45* | -0.05 | 0.05  | 0.64* |       |       |
| Se             | 0.42*                  | 0.67*         | 0.68* | 0.25  | 0.79* | 0.48* | -0.05 | -0.02 | 0.58* | 0.67* |       |
| Zn             | 0.51*                  | 0.46*         | 0.56* | 0.51* | 0.61* | 0.45* | 0.15  | 0.09  | 0.64* | 0.73* | 0.67* |
|                | Al                     | As            | Cd    | Со    | Cr    | Cu    | Hg    | Mn    | Ni    | Pb    | Se    |



**Fig. 1.** Principal component analysis of urinary elements. Three grouping are apparent: (a) mercury; (b) aluminum and manganese; and (c) all other elements. <sup>14</sup>

### Discussion

Mercury exposure in the target region (Paruchuri et al., 2010) : 5%: high level of U\_Hg >50µg/L (WHO guideline) The highest levels in the mining sector (←→ findings of the current study)



### Discussion

Elevated U\_AI ~self reported neurological and visual problems? Low U\_Se ~mercury toxicity↑? Elevated As and Cr ~carcinogens (ATSDR, 2007, 2008); different toxicity by chemical forms

### Discussion

## SSGM communities



Hg exposure: preventable by occupational and environmental routes

The other elements: methods for prevention unknown

Fig. 1. Principal component analysis of urinary elements. Three grouping are apparent: (a) mercury; (b) aluminum and manganese; and (c) all other elements.

## Action for 100 million people depends on SSGM