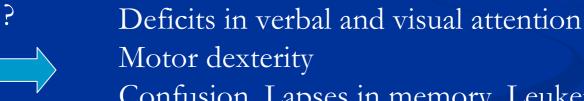
Organophosphate Pesticide Exposure and Work in Pome Fruit: Evidence for the Take-Home Pesticide Pathway

Gloria D. Coronado, Eric M. Vigoren, Beti Thompson, William C. Griffith, and Elaine M. Faustman

¹Cancer Prevention Research Program, Seattle, Washington, USA; ²Department of Environmental and Occupational Health Sciences, School of Public Health and Community Medicine, University of Washington, Seattle, Washington, USA

Organophosphate (OP) pesticides are commonly used in the United States, and farmworkers are at risk for chronic exposure. Using a sample of 218 farmworkers in 24 communities and labor camps in eastern Washington State, we examined the association between agricultural crop and OP pesticide metabolite concentrations in urine samples of adult farmworkers and their children and OP pesticide residues in house and vehicle dust samples. Commonly reported crops were apples (71.6%), cherries (59.6%), pears (37.2%), grapes (27.1%), hops (22.9%), and peaches (12.4%). Crops were grouped into two main categories: pome fruits (apples and pears) and non-pome fruits. Farmworkers who worked in the pome fruits had significantly higher concentrations of dimethyl pesticide metabolites in their urine and elevated azinphos-methyl concentrations in their homes and vehicles than workers who did not work in these crops. Among pome-fruit workers, those who worked in both apples and pears had higher urinary metabolites concentrations and pesticide residue concentrations in dust than did those who worked in a single pome fruit. Children living in households with pome-fruit workers were found to have higher concentrations of urinary dimethyl metabolites than did children of non-pome-fruit workers. Adult urinary concentrations showed significant correlations with both the vehicle and house-dust azinphos-methyl concentrations, and child urinary concentrations were correlated significantly with adult urinary concentrations and with the house-dust azinphos-methyl concentration. The results provide support for the take-home pathway of pesticide exposure and show an association between measures of pesticide exposure and the number of pome-fruit crops worked by farmworkers. Key words: children of farmworkers, contamination, crops, farmworkers, house dust, occupational exposure, pesticides, take-home pathway, urinary metabolites, vehicle dust, WinBUGS. Environ Health Perspect 114:999-1006 (2006). doi:10.1289/ehp.8620 available via http://dx.doi.org/ [Online 13 March 2006]


DEPT MEETING Umezaki M 13 March 2007

Intro-1

Organophosphate (OP) pesticides

Acute Exposure, Acute Health Effect: Well characterized

Acute Exposure, long-term health effect ?? Chronic Exposure, long-term health effect ??

Confusion, Lapses in memory, Leukemia, Lung cancer Transfer coefficients: the estimated amount of pesticide exposure

By Crops

Thinner > whose who harvest, prune, weed ...

Transfer coefficients

Total amount of pesticide

Time of application

Number of crops

Intro-4

Pesticide exposure among children of farmworkers?

(National Research Council, 1993)

Pesticide exposure among children

- -Direct
- -Take-home pathway

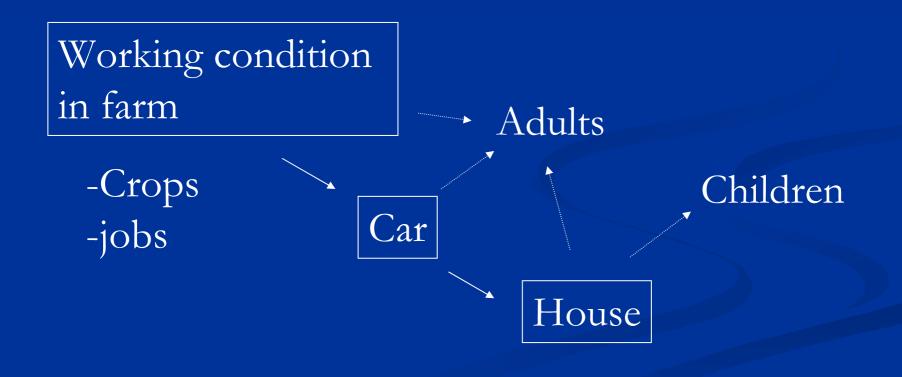
Children usually wear minimal clothing Children often play on the floor

Fensk et al. (2000)

Children of agricultural workers: urinary metabolites T

Lambert et al. (2000)

Children of agricultural workers who work in pear : urinary metabolites 1


Curl et al. (2000)

Urinary metabolites of Children and that of adults in the same household: Correlated

Few investigation of house dust

Intro-7

Using a large sample in Washington State,

Setting

- Yakima valley of Washington State
- 50000 agricultural workers
- Apples, pears, cherries, hops, peaches
- 50%=Hispanic

In Yakima county, Washington State in 1999,

- -75,264 acres: apples
- -10,190 acres: pears
- -6,129 acres: cherries
- -1,438 acres: peaches
- -20,061 acres: hops
- -15,529 acres: grape

OP pesticides: Table 1

Table 1. Limits of detection of pesticide residues in dust (μ g/g) and percentages of analyzed vehicle (n = 190) and house-dust samples (n = 156) containing detectable levels of pesticide residue.

	Azinphos-methyl	Phosmet	Malathion	Methyl-parathion	Chlorpyrifos	Diazinon
Limit of detection (µg/g)	0.08	0.08	0.13	0.11	0.11	0.11
Vehicle dust (%)	87	16	12	22	18	2
House dust (%)	85	15	13	14	26	4

Minimum interval=14 days
Max application amount: 8 pounds/a/y apple,
6 pounds/a/y pears, less for other crops

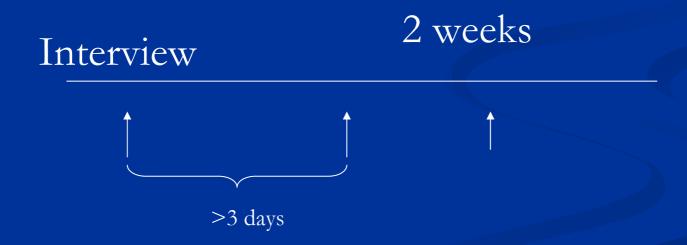
Questionnaire

73 item

- -Crops that the workers worked in for the last 3 months
- -Jobs for the last 3 months
- in Spanish

Survey procedures

Materials and methods-13


N=571 HH (recruit from the previous survey, recruit in farm camps)

218 HH with 2-6 years children

Urine for a worker and his/her child Dust on the floor of the house Dust in the vehicle

June-October 1999

2-3 spot urine samples: combined

Gas chromatography was used for the detection of 5 pesticide metabolites:

Dimethylphosphate (DMP): 7.2 μ g/L -DL Dimethylthiophosphate (DMPT): 1.1 μ g/L Dimethyldithiophosphate (DMDTP): 0.65 μ g/L Diethylphophate: 2.9 μ g/L Diethylthiophosphate: 1.2 μ g/L

Dust samples

Home

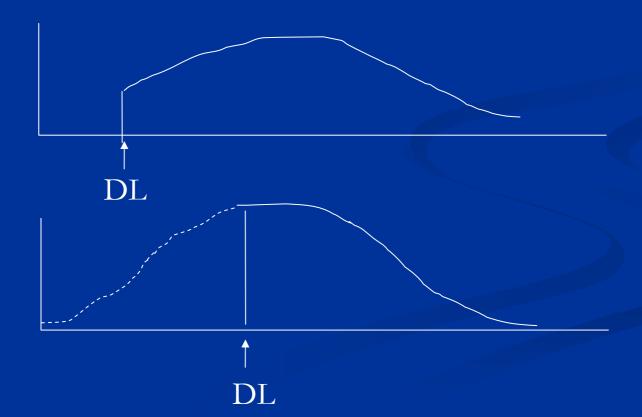
- 1m × 1m plush carpets
- -2m × 2m hard/smooth floor

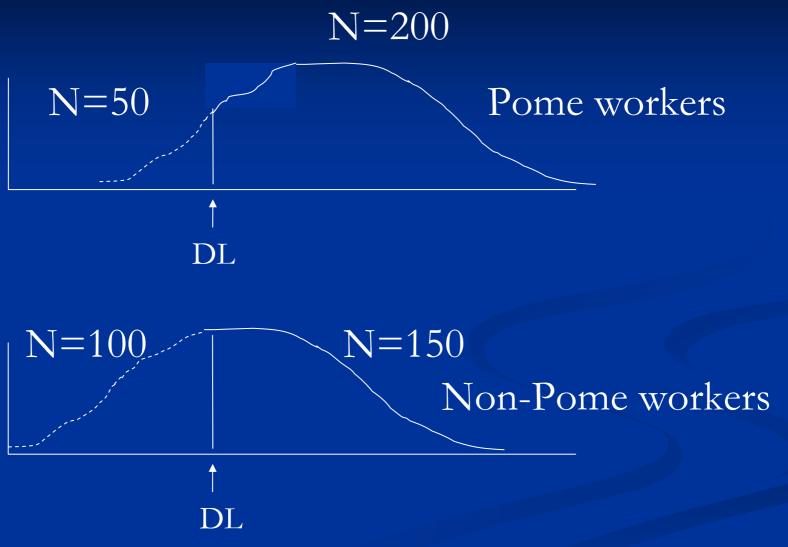
Car

- footwells

6 of OP pesticides: Table 1

Pome fruits: apple, pears


Non-Pome fruits: others


Pome fruits workers: Pome + the others
Non-Pome fruits workers: Non-Pone fruits

Geometric Means and SDs No creatinine adjustment

< Detection limit (DL)

- replace with figure of DL, or
- replace with 0

25000 simulations

213 urine samples of adults211 urine samples of children156 samples of house dust190 samples of vehicle dust

Results-22, 23

Table 2. Crops in which study participants (n = 218) reported performing agricultural job tasks within the previous 3 months.

<u>.</u>	Apples	Pears	Peaches	Cherries	Grapes	Hops	Other
Apples	156 ^a						
Pears	79	81					
Peaches	27	24	27				
Cherries	105	62	17	130 ^a			
Grapes	41	18	6	32 ^a	59		
Hops	31 ^a	16	7	24	20	50	
Other	39	21	11	36	12	13	63 ^a

^aNo answer was recorded for three different farmworkers as to whether or not they worked in apples, cherries, or other crops, respectively. For these cross-tabulations, n = 217.

>1/3: apple

1/3: pears

2/3: cherries

1/10: grapes, hops

Apple greatly overlapped with pears and peaches

Table 3. Demographic characteristics of study participants (%): selected adult farmworkers with a child 2–6 years of age in the household by pome/non-pome crop classification ($n = 217^a$).

Characteristic	Non-pome (<i>n</i> = 59)	Pome (<i>n</i> = 158)	One pome (<i>n</i> = 79)	Two pome (<i>n</i> = 79)
Age (years) 18-24 25-34 35-49 ≥ 50 Not reported	15.3	8.9	7.6	10.1
	47.5	41.1	46.8	35.4
	23.7	28.5	24.1	32.9
	5.1	5.1	6.3	3.8
	8.5	16.5	15.2	17.7
Education < 4th grade 5th through 8th 9th through 12th ≥ High school graduate	25.4	32.3	27.8	36.7
	35.6	41.1	41.8	40.5
	32.2	21.5	22.8	20.3
	6.8	5.1	7.6	2.5
Annual household income (US\$) < 10,000 10,000 < 15,000 15,000 < 25,000 ≥ 25,000 Not reported	18.6	21.5	19.0	24.1
	22.0	29.1	29.1	29.1
	49.2	37.3	38.0	36.7
	10.2	10.1	11.4	8.9
	0.0	1.9	2.5	1.3
Marital status Married or living as married Separated or divorced Never married Other	86.4	88.6	91.1	86.1
	3.4	2.6	2.5	2.5
	10.2	8.2	6.3	10.1
	0.0	0.6	0.0	1.3
Birthplace Mexico United States	83.1 15.3	94.9 3.8	93.7 5.1	96.2 2.5
No. of years working in agriculture < 10 10-< 20 ≥ 20 Male sex	45.8 28.8 25.4 57.6	48.1 31.0 20.9 67.7	53.2 22.8 24.1 64.6	43.0 39.2 17.7 70.9
Interview in Spanish	86.4	94.3	92.4	96.2

^aTotal n = 217 because of one pome classification missing value.

8 adults had higher DMP by orders: $3780-12000 \mu \text{ g/ml}$ Cf. the others: DL~ $100 \mu \text{ g/ml}$

- Work in apples, 4 work in pears7 were thinner
 - A. Analysis for all the subjects (incl above 8)
 - B. Analysis for all but above 8 subjects

Similar results Table 4 ~ B

Results-26, 27

%detection µg/L

Pome > Non-Pome 2 Pomes > 1 Pomes

Adult = Child

Table 4. Frequency of detection and estimated GM concentrations of dimethyl urinary metabolites among adult farmworkers and their children, by agricultural crop (n = 210).

	,	7 3 1 ,		
Metabolite and crop	Detection ^a (%)	Estimated ^b GM (µg/L)	Estimated ^b GSD	$p(pome_{GM} \le non-pome_{GM})$
Adult DMP Non-pome fruit Pome fruit Apples or pears Apples and pears	8.8 20.4 14.7 26.4	0.71 (0.20–1.68) 1.72 (0.80–2.89) 1.19 (0.42–2.45) 2.22 (0.97–4.00)	5.96 (4.02–10.74)	0.017
Adult DMTP Non-pome fruit Pome fruit Apples or pears Apples and pears	86.0 96.6 94.7 98.6	4.35 (2.92–6.47) 15.34 (12.02–19.54) 13.42 (9.55–18.93) 17.52 (12.41–24.83)	4.48 (3.90–5.29)	0.000
Adult DMDTP Non-pome fruit Pome fruit Apples or pears Apples and pears	36.8 61.2 60.0 62.5	0.47 (0.26–0.81) 1.37 (0.97–1.90) 1.19 (0.74–1.88) 1.58 (0.98–2.49)	6.72 (5.34–8.91)	0.001
Child DMP Non-pome fruit Pome fruit Apples or pears Apples and pears	7.1 22.5 18.9 26.0	1.34 (0.59–2.39) 3.53 (2.40–4.65) 3.06 (1.87–4.38) 3.96 (2.54–5.49)	2.84 (2.28–3.91)	< 0.001
Child DMTP Non-pome fruit Pome fruit Apples or pears Apples and pears	78.6 91.2 93.2 89.0	3.54 (2.50–4.98) 6.18 (5.00–7.61) 5.76 (4.29–7.76) 6.61 (4.89–8.90)	3.61 (3.19–4.20)	0.003
Child DMDTP Non-pome fruit Pome fruit Apples or pears Apples and pears	41.1 46.3 40.5 52.1	0.65 (0.39–1.03) 0.98 (0.71–1.30) 0.88 (0.58–1.32) 1.08 (0.71–1.59)	4.83 (3.90–6.30)	0.061

GSD, geometric SD. Ranges are posterior predictive probability intervals.

^aBased on the number of samples analyzed: non-pome, adult n = 57, child n = 56; apples or pears, adult n = 75, child n = 74; apples and pears, adult n = 72, child n = 73. ^bBased on the total number of samples: non-pome, n = 59; apples or pears, n = 75; apples and pears, n = 75; missing fruit classification, n = 1.

Table 5. Frequency of detection and estimated GM concentrations and geometric standard deviations (GSDs) of azinphos-methyl residues in vehicle and house dust (n = 210).

Pesticide and crop	Detection ^a (%)	Estimated ^b GM (μg/g)	Estimated ^b GSD	$p(pome_{GM} \le non-pome_{GM})$
Vehicle azinphos-methyl			4.65 (3.97–5.61)	
Non-pome fruit	63.5	0.17 (0.11-0.26)		< 0.001
Pome fruit	95.4	1.16 (0.89-1.51)		
Apples or pears	94.1	0.78 (0.54-1.11)		
Apples and pears	96.8	1.79 (1.24-2.58)		
House azinphos-methyl			3.55 (3.07-4.25)	
Non-pome fruit	62.5	0.17 (0.11-0.25)		< 0.001
Pome fruit	92.7	0.79 (0.63-1.00)		
Apples or pears	90.7	0.59 (0.43-0.82)		
Apples and pears	94.6	1.05 (0.76-1.45)		

Ranges are posterior predictive probability intervals.

Pome > Non-Pome 2 Pomes > 1 Pomes

^aBased on the number of samples analyzed: non-pome, vehicle n = 52, house n = 40; apples or pears, vehicle n = 68, house n = 54; apples and pears, vehicle n = 62, house n = 55. ^bBased on the total number of samples: non-pome, n = 59; apples or pears, n = 75; apples and pears, n = 75; plus one sample with missing fruit classification.

Table 6. Correlation matrix of dimethyl phosphate urinary metabolite concentrations and azinphos-methyl residue concentrations in vehicle and house dust (n = 210).

Metabolite		Adult			Child		Azinphos	s-methyl
or pesticide	DMP	DMTP	DMDTP	DMP	DMTP	DMDTP	Vehicle	House
Adult DMP	1.00							
Adult DMTP	0.51*	1.00						
Adult DMDTP	0.35*	0.73*	1.00					
Child DMP	0.20	0.12	0.12	1.00				
Child DMTP	0.21*	0.34*	0.22*	0.53*	1.00			
Child DMDTP	0.13	0.34*	0.37*	0.39*	0.81*	1.00		
Vehicle azinphos-methyl	0.28*	0.22*	0.13	0.10	0.15	0.09	1.00	
House azinphos-methyl	0.32*	0.25*	0.09	0.25*	0.24*	0.16	0.52*	1.00

^{*}Statistically significant: 95% posterior predictive probability interval does not include 0.0.

Among metabolites
Between adult and child
Between urine and dust

No effect of thinning

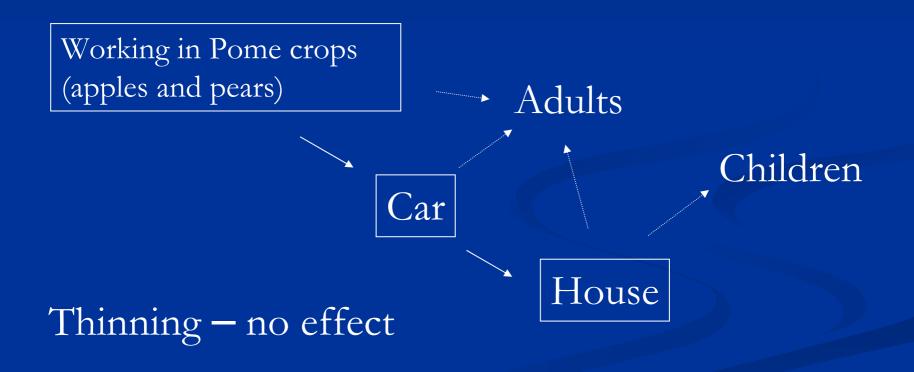
Table 7. Frequency of detection and estimated GM concentrations of dimethyl urinary metabolites among adult farmworkers and their children, by agricultural crop (n = 210).

Metabolite and pome versus thin	Detection ^a (%)	Estimated ^b GM (μg/L)	$p(\text{thin}_{\text{GM}} \leq \text{non-thin}_{\text{GM}})$
Adult DMP Non-pome/non-thin	8.9	0.70 (0.17–1.82)	0.641
Non-pome/thin Pome/non-thin Pome/thin	8.3 20.7 20.3	0.49 (0.05–2.56) 1.93 (0.59–4.63) 1.55 (0.67–2.76)	0.669
Adult DMTP Non-pome/non-thin Non-pome/thin	84.4 91.7	3.84 (2.45–5.99) 7.01 (2.96–16.50)	0.111
Pome/non-thin Pome/thin	96.6 96.6	15.07 (8.74–26.03) 15.43 (11.76–20.22)	0.470
Adult DMDTP Non-pome/non-thin Non-pome/thin	37.8 33.3	0.46 (0.23–0.85) 0.50 (0.14–1.68)	0.443
Pome/non-thin Pome/thin	65.5 60.2	1.71 (0.81–3.53) 1.30 (0.88–1.87)	0.752
Child DMP Non-pome/non-thin Non-pome/thin	6.7 9.1	1.15 (0.44–2.26) 1.53 (0.37–4.13)	0.335
Pome/non-thin Pome/thin	21.4 22.7	3.37 (1.73–5.65) 3.42 (2.25–4.62)	0.477
Child DMTP Non-pome/non-thin Non-pome/thin	77.8 81.8	3.62 (2.45–5.30) 3.24 (1.49–6.95)	0.602
Pome/non-thin Pome/thin	85.7 92.4	7.52 (4.63–12.18) 5.90 (4.67–7.45)	0.813
Child DMDTP Non-pome/non-thin Non-pome/thin	40.0 45.5	0.60 (0.34–1.02) 0.77 (0.26–2.11)	0.336
Pome/non-thin Pome/thin	53.6 44.5	1.18 (0.62–2.20) 0.93 (0.66–1.28)	0.751

Ranges are posterior predictive probability intervals.

^aBased on the number of samples analyzed: non-pome/non-thin, adult n = 45, child n = 45; non-pome/thin, adult n = 12, child n = 11; pome/non-thin, adult n = 29, child n = 28; pome/thin, adult n = 118, child n = 119. ^bBased on the total number of samples: non-pome/non-thin, n = 47; non-pome/thin, n = 12; pome/non-thin, n = 29; pome/thin, n = 121; plus one sample with missing fruit classification.

No effect of thinning


Table 8. Frequency of detection and estimated GM concentrations of azinphos-methyl residues in vehicle and house dust (n = 210).

Pesticide and crop	Detection ^a (%)	Estimated ^b GM (µg/g)	$p(\text{thin}_{\text{GM}} \leq \text{non-thin}_{\text{GM}})$
Vehicle azinphos-methyl			
Non-pome/non-thin	63.4	0.18 (0.11-0.29)	0.677
Non-pome/thin	63.6	0.14 (0.05-0.36)	
Pome/non-thin	96.0	0.96 (0.53-1.75)	0.242
Pome/thin	95.2	1.22 (0.91–1.63)	
House azinphos-methyl			
Non-pome/non-thin	58.1	0.14 (0.09-0.22)	0.087
Non-pome/thin	77.8	0.27 (0.12-0.61)	
Pome/non-thin	91.3	0.65 (0.39-1.09)	0.201
Pome/thin	93.0	0.83 (0.64–1.08)	

Ranges are posterior predictive probability intervals.

^aBased on the number of samples analyzed: non-pome/non-thin, vehicle n = 41, house n = 31; non-pome/thin, vehicle n = 11, house n = 9; pome/non-thin, vehicle n = 25, house n = 23; pome/thin, vehicle n = 105, house n = 86. ^bBased on the total number of samples: non-pome/non-thin, n = 47; non-pome/thin, n = 12; pome/non-thin, n = 29; pome/thin, n = 121; plus one sample with missing fruit classification.

Summary of findings

Discussion-32

The authors' previsou study (Coronado et al., 2004):

- -Children of thinner had higher DMTP than others
- -House dust of thinner was high in OP pesticides concentration

The present study

True factor was "Crops"

Cf. 91% of thinners worked in Pome fruits

Pome fruits require more pesticides than others:

Washington Agricultural Statistics survey (1999)

Azinphosmethyl application:

 $1.8 \, lb/acre/y - apple$

1.4 lb/acre/y - pears

1.0 lb/acre/y – cherries

0.8 lb/acre/y – peaches

Pome fruits

Discussion-35

Recent exposure (evaluated by questionnaire) did not explain the variation in urinary metabolites

Work place exposure < take-home pesticide exposure

Discussion-36

```
CDC report: general people
Urinary DMTP (20-59 years) = 1.47 \mu g/L
--- Non-Pome = 4.4 \mu g/L (present study)
--- Pome = 15.3 \mu g/L (present study)
```

CDC report: general children
Urunary DMTP (6-11 yeas)=2.95
$$\mu$$
 g/L
--- Non-Pome = 3.5 μ g/L (2-6 years)
--- Pome = 6.2 μ g/L (2-6 years)

Age effect

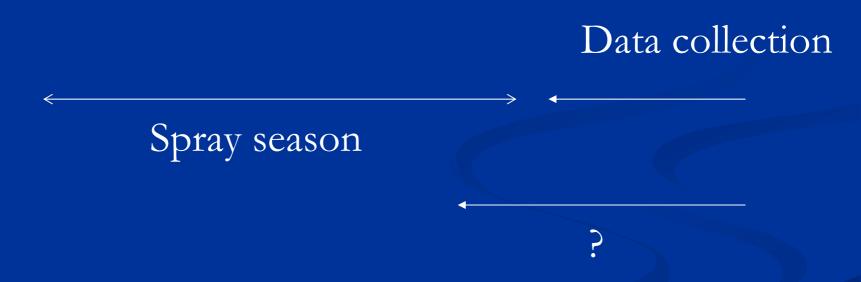
House dust azinphosmethyl for Pome workers: - 0.79 μ g/L

Lu et al (2000): 1.0 μ g/L in Washington State Shalat et al (2003) 0.51 μ g/L in US-Mexico border

Discussion-38, 39

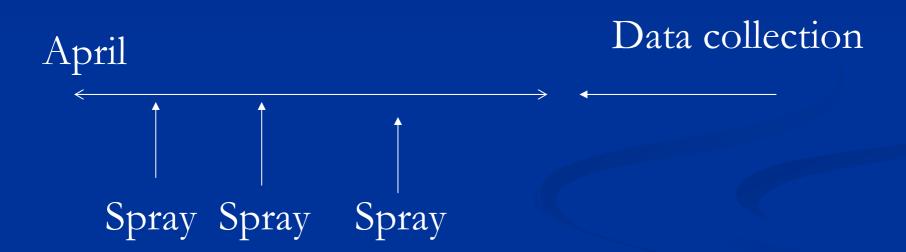
Children of Pome fruits workers had higher urinary metabolites,

House of Pome fruits workers had higher residues of pesticides.


×

Take-home pathways

Pesticide use in the house Dietary intake Lu et al. (2000) Koch et al (2002) Fenske et al (2000)


Discussion-40 Limitation

- Timing of sample collection

Discussion-41

In 1999, frequency of spray ↓

Urunary metabolites peak after 24-48 hours from exposure

Discussion-42

Judgement of Two Pome fruits workers

Asked the number of crops worked for the last 3 months most people were categorized as multi-crops workers

No information about hours/week

Discussion-43 Strength

Large sample size
Variation in crops
Adult, child, house, vehicle
Baysian estimation of values lower than DL
Bias ↓

Conclusions-44

Children of farmworkers who worked in two Pome crops were exposed to OP pesticides probably through "takehome pathway"